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The  present  study  represents  an  attempt  to  account  for  quantitative  prop- 
erties of behavior in a  game  situation  involving social interaction between 
two  individuals. The basis of prediction is a  Markov model for  learning 
which, in conceptual  development, is closely related  to  statistical  learning 
theory [ 5 ] .  

Before  proceeding  to  the  details of this  study  there  are  three  general re- 
marks  we would like to make  concerning  the  fundamental  ideas  and  methods: 

( 1 ) The  principles of behavior  that  constitute  our  theory of social inter- 
action are rigorously  derivable  from  general  principles of individual  behavior, 
and in particular  from  stochastic  versions of reinforcement  theory. 

( 2 )  The  results  are  quantitative in a  sharp  sense;  elaborate  mathematics 
have  not been  applied to  quantities which can only  be ordinally  measured. 

( 3  ) The  underlying  principles  constitute  a  genuine  theory in the  sense 
that  prior to experimentation  quantitative  predictions of behavior  may be 
made  for  a  wide  range of parameter  values. 

For  the  purposes of this  experiment a play of a  game is a  trial. On a 
given  trial,  each of the  players  makes  a choice between  two  responses.  After 
the  players  have  independently indicated their  responses,  the  outcome of the 
trial is announced. In an  earlier  study [3] we considered  games  where  the 
outcomes  were  such  that on each  trial  one  player rvas " correct " and the 
other  player  was " incorrect "; that is, zero-sum  games. In this  study  the 
games  have  outcomes  such  that  on  each  trial both players  can be correct, 
both can be incorrect, or one  can be correct and the  other  incorrect;  that  is, 
they  are  non-zero-sum  games. More important  than  the  shift  from  zero-sum 
to  non-zero-sum  games is the  fact  that i n  this  experiment, in contrast  to [3] ,  
the  players  are  informed  that  they  are  interacting Lvith each  other. 

On all trials,  the  game is described by the following payoff matrix: 

1 This  research  was  supported by the  Behavioral  Sciences  Division of the  Ford 
Foundation  and by the Group Psychology  Branch of the Office of Naval  Research. 
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(al, bl, Cl, dl) (0% bt, cz, d21 

AZ (a3, b3, ~ 3 ,  d3) ( 0 4 ,  bq, C&, 4 )  1 
The players are designated A and B. The respclnses available to A are A:. 

and AZ; similarly,  the responses for B are BI and B*. !f A selects AI and 
B selects B1, then  there is ( i ) a probability a 1  that both players are correct, 
(ii)  a probability b1 that A is correct and is incorrect, (iii) a probability ct 
that A is incorrect  and B is correct, and (iv) a probability (z, that both players 
are incorrect. These wdtcomes are mutually exclusive and  exhaustive,  given 
the response pair AIBI. The outcomes of the  other  three response pairs, 
AlÆ2, A&, and A B z ,  are similarly specified  in terms of (az,  bz, Ca, d& 
(03, b3, c3, d3) and (ar, bq, cd, d& 

The experiment to  be presented emplop the procedure outlined above. At 
the  start of an  experimental session, the  subjects  are  informed of the  game 
characteristics of the  situation  and  instructed to maximize the  number of 
trials on which their responses are correct. 

Model 
Since a detailed mathematical development of the model will be presented 

elsewhere, we shall confine ourselves to the most salient features and  omit 
mathematical proofs. A more complete development of the psychological con- 
cepts which lead to  the  present model and  a consideration of its  relation to 
the  Estes  and Burke  stimulus-sampling  theory can be found in Atkinson and 
Suppes [3]. 

We begin by making  the simplifying assumption that on all  trials a player's 
response is determined by a  single  stimulus-that is, the  event associated with 
the  onset of a  trial. The subject is described as being in one of two possible 
states: (a) if he is in State 1, the  stimulus is conditioned to Response 1, and 
in the presence of the  stimulus Response 1 will  be elicited; (b) if he isi in 
State 2, the  stimulus is conditioned to Response 2, and in the presence of 
the  stimulus Response 2 will be elicited. Thus, on any  trial n, the two 
players are described in tmms of one of the  four states ('4.1, BI), (AI, Ba), 
(A2> BI) ,  and (A2;  BZ), where  the first rnernber of a couple indicates  the state 
of Player A and  the second, the  state of Player B. For  example, (AZ,  BI )  
means that Player A wil! make Wespcnse and Player B will make BI. It 
is postulated that  the  change'of  states  from one trial to the  next is Markov- 
ian, and learning is  defined with  respect to the {& B I )  states.  This Markov 
property may be derived  from more general  independence-of-path  assump- 
tions, which are not usually explicitly stated but are characteristic of stimulus- 
sampling theory. 

In specifying the  learning process the t e m  reinforcement will be used. It 
is defined as follows for a situation in which  only two responses are available 
to  the  subject: if a response occurs and is correct,  then  the response is rein- 
forced; if a response occws and is incorrect: then the alternative response is 
reinforced. Thus on every  trial one of the two responses Is reinforced. 
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When one of Player A’s responses is reinforced on trial n, there  is ( i )  a 
probability 8A that  the stimulus  governing  Player A’s response will be con- 
ditioned to  the reinforced response and  therefore  that. on trial n + 1 Player 
A will make  the response reinforced on trial n; and (ii) a probability 1 - B A  
that  the conditioned status of the  stimulus will remain unchanged and there- 
fore that on trial n + 1 Player A will repeat  the respdnse made on trial n. 
Identical rules  describe the learning process for  Player B in terms of BB. 

The parameters B A  and B B  describe the learning rate characteristics Of 
Players A and B, respectively. Some theoretical predictions can be made 
without knowledge of these  parameter  values; in general,  however, predictions 
are a  function of both B A  and BB. These values can be estimated from a 
subset of the  data and used to  predict the remaining data ([4], [7]), or in 
some cases  they  can be estimated  from  other  experiments ([Z], 161). - 

For  the  set of assumptions  given above and  the payoff probabilities at, bi, ci, 
and di, the  transition  matrix ([8], [g]) describing  the  learning process can be 
derived  and is as follows: 

i Ul+~bl(l-BB) blBB  clBA dlBaBe 
+cl(l--8A) +d18B(l-@A) +d18.4(1-Os) 
+dl(I--Ba)(l-@B) 

P= 

i 

1 

In the  matrix P the rows and columns correspond to  the following states: 
(1) (A1, B 1 ) ,  (2) ( A I ,  B?), (3) ( A 2 ,  B1?, and (4) (AZ, BZ?. Rows designate  the 
state on trial n and columns the  state on trial n + 1. Thus, for  example, 

= dsBABE (the  entry in row 2, column 33 is the conditional probability of 
being in State 3 on trial n + 1 given that the pair of subjects was in State 
2 on trial n, for we have 

d38.48, = .ar.O + b,.O + cr.O 
+ &[(l - R.-dll-RB).O + Ba(1 - @,).o + @ ~ ( 1  - @ a ) . O  + B A B B . ~ ]  . 

Specifically, a  transition  from State 2 to State 3 can occur oniy if  A l  and B, 
both were incorrect (probability d?)  and conditioning occurred for both players 
(probability B,( .BB).  

The transition probabilities p i j  and an initial probability distribution  for  the 
states completely describe behavior in the  situation, and from  these one can 
obtain any  theoretical  quantity  desired. Of particular  interest is an expression 
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for the asymptotic probabilities of each of the four states,  that is, the asymptot- 
ic distribution for the 'joizit occurrence of responses At and Bj(i, j = 1 or 2) .  
This  quantity will he denoted as uk(& = 1,2,3,4) .  It can be shown that the 
probability distribution {ux> satisfies the following system of equations: 

4 

(l) Zla = .z z4iprr !k  = I; k?, 3 ,  4) 
l*i 

In terms of the quantiti-s u k 3  \-L';l o%ak the asymptotic probability of an Al 
and a BI response, nemeiy, 
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centered  between  the  keys at  the  subject's eye level. Each of the  two re- 
maining lights, the reinforcing signals, was mounted directly above one of 
the  keys. The presentation and duration of the  lights  were  automatically 
controlled. 

Subjects. The subjects  were 88 undergraduates obtained from  introductory 
psychology courses. They  were randomly assigned to  the experimental 
groups  with  the  restriction that  there  were 24 pairs of subjects in the  Sure 
Group and 20 in the Mixed Group. 

Procedure. For  each  pair of subjects, one was randomly selected as Player 
A and the  other as Player B. Further,  for each subject one of the two re- 
sponse keys  was randomly designat.ed Response l and  the  other Response 2, 
with the restriction that  the following possible combinations occurred equally 
often in each of the experimental groups: (a) A1 and B1 on the  right,  (b) 
AI on the  right and B1 on the  left, (c) Al on the  left  and BI on the  right, 
and (d) Ai and BI on the  left. 

When the  subjects had been seated,  they  were  read  the following instruc- 
tions: 

" This-experiment  is analogous to  a  real-life  situation  where  what you gain 
or lose depends not only on what you  do but also on what someone else does. 
In fact, you should think of the  situation as a  game involving you and another 
player,  the person at the  other end of the  table. 

" The experiment  for each of you consists of a  series of trials. The top 
center  lamp on your panel will light for about  two seconds to indicate the 
start of each  trial.  Shortly thereafter one or the  other of the tWQ lower lamps 
will light  up. Your job is  to predict on each trial which one of the  two 
lower lamps will light and indicate your prediction by pressing  the proper 
key. That  is, if you expect  the  left  lamp  to  light,  press  the  left  key; if you 
expect the  right lamp to light,  press  the  right  key. On each trial  press one 
or  the  other of the two  'keys,  but  never both. If  you ase not sure which key 
to press,  then  guess. 

" Be sure to indicate your choice by pressing  the II-oper key immediately 
after  the onset of the  signal  light. That is, when the signal light goes on, 
press one or  the  other key down and release it.  Then wait until one of the 
lower lights  goes on. If tKe light above the key you pressed goes  on,  .your 
prediction was correct; if the  light above the key opposite from the one you 
pressed goes on, you were  incorrect. 

" Being correct  or incorrect on a  given  trial depends on the key you press 
and also on the key the  other player presses. With some combinations of 
your key choice with the  other  player's key choice, you may both be correct; 
with  other combinations one player will be correct and the  other  incorrect; 
for still other combinations you may both be incorrect. 
" As you have probably already  guessed,  the  situation is fairly complicated. 

The object of the  experiment is to see how many correct predictions you can 
get over  a  series of trials." 

Questions were  answered by paraphrasing  the  appropriate  part of the  in- 
structions. 



Following the  instructions, 210 trials  were  run in continuous sequence. For 
each pair of subjects,  sequences of reinforcing lights  were  generated  in.  ac- 
cordance with  assigned  values of (ai, bi, cl, di) and observed responses. 

On all  trials  the  signal  light was lighted  for 3.5 seconds; the  time between 
successive signal  exposures was 10 seconds. The reinforcing  light followed 
the cessation of the  signal  light by 1.5 seconds and  remained on for 2 seconds. 

Results and Discussion 

Mean  Learning Curues ajzd Asymptotic Results. Fig. 1 presents  the  mean 
proportions of AI and BI responses in successive blocks of  30 trials  for  the 
entire sequence of  210 triais. An inspection of this  figure  indicates that  re- 
sponses were  fairly  stable  over  the  last 90 trials. To check the stability of 
response probabilities for individual data, t ' s  for paired measures  were com- 
puted between response proportions for  the first and last  halves of the final 
block of 90 trials.  In all cases  the obtained values of t did not approach 
significance at  the . l0  level. In view of these  results  it  appears reasonable to 
assume that a  constant level of respondillg has been attained;  consequently, 
the proportions computed over  the  last 90 trials  were used as estimates of 

l 
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FIGURE 1. The mean proiwrtions of . I ,  and Li, responses in  successive blocks 
of 30 trials for the Sure and l l ixed Groups. 
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the asymptotic probabilities of Al and BI responses. Table 1 presents the 
observed mean proportions of Al and BI responses in the  last 90-trial block 
and  the  standard  deviations associated with  these  means.  Entries for the 
Sure Group are based on N = 24; for  the Mixed Group, N = 20. 

TABLE 1 
Predicted and  Observed Mean  Proportions of dl and BI Responses 

over  the  Last 90 Trials 

Predicted I Observed I 8 I Predicted I Observed I S 

Sure .71 .72 . O90 .l4 . l6 . o99 
Mixed 1 .55 I .55 1 .O56 i .28 I .25 1 .O79 

The values predicted by the Markov model are alsó presented in Table 1. 
They  are obtained by substitution in the following equations: 

(4) Pm(A1) 
- - (b3 + d3) (c4 + dl )  + (c3 + d3) (b4 + d41 

(c, i- d2 + C P  + dd(b3 + d3 + b4 + da) - (a4 i b4 - a3 - bsi(a4 + c4 - az -cd ' 

( 5 )  & ( m  

- - (c2 + d21 (bi + d2 + (c4 + d41 (b, + d21 
(CZ + d2 + c4 + dd (b3 + d3 + br + di) - (a4 + b4 - u3 - b3) (a4 + c4 - aa - c,) ' 

These equations  were  derived by solving for {uk} in Equation 1 and then 
substituting in Equations 2 and 3. It should be noted that these  equations 
are not a  general solution to the Markov process described in the first section 
of this  paper,  but  represent  a solution only when the following pair of con- 
ditions are satisfied: 

( 6 )  
(a: + u3) + (b: + b3) = (a2 + al) + (b2 + b,) 
(a1 + a21 + (c: + Cs) = (a3 + ar) + (c3 + Cd) . 

When these conditions do  not hold, the solutions for &(AI) and &(BI) are 
functions of B A  and B B .  Since Equations 4 and 5 are independent of Ba and 
B B  and are  strictly functions of the  experimental  parameter  values, it follows 
that these  equations should predict both individual behavior and group  mean 
values. That is,  over a sufficiently long series of trials,  the observed pro- 
portions of responses for  an individual subject and the  group mean of these 
quantities both should approach the  values predicted by Equations 4 and 5. 

Inspection of Table 1 indicates close agreement between observed and 
predicted values. To check this  agreement t tests were  run between the 
observed and predicted values employing the observed standard deviation of 
the  mean as  the  error  term. In all cases  the obtained value of t did not 
approach significance at the . l 0  level. 

A check on the correspondence between individual asymptotic behavior and 
predicted values is equivalent  to  evaluating  the  agreement between observed 
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standard  deviations  presented in Table 1 and  asymptotic  variability  predicted 
by the model.' Unfortunately,  direct  computation of the  theoretical  standard 
deviation is extremely  cumbrous,  and  we  have  not  obtained  an  analytical 
solution.  Nevertheless, SGIIE results  fron;  Monte  Carlo  runs [3] tentatively 
suggest  that  the  observed  variances  are of  ehe proper  order  to be accounted 
for in terms of the  present model. 

Transition  Probabilities. Because of the  relativeiy  simple  mathematica1 
character of stationary Markov processes with a finite  number of states, it is 
possible to  ask  certaia  detailed  questione.  Prcbably  the  most  immediate 
question is: How do ehe aggregate  transiticn.  matrices  for  the  two  experimental 
groups  compare  with  the  theoretical  matrix [ f i i d ]  that is presented  on  p. 67 ? 

TABLE 2 
Observed Transition  Matrices Corresponding t o  t t e  Theoretical 

Transition Matrix, Computed  over the Last 93 Trials 

Table 2 presents  values for the  observed  matrix &] computed  over  the  last 
90 trials  for  the two groups.  The  maximum likelihood estimate bid of the 
quantity PL, is obtained as fa>llows il]: ( i ) Let N ~ ) ~ G )  denote  the  number of 
subject  pairs in State i on trial I I  - 1 and State j m t.ria1 n .  ( i i )  L t t  

:,v 
N:, = C i%',,(?Z) ; 

n=12! 

then 

No statistical  test is needed to see that sune  or t5: p i j ' s  differ  significmtly 
from  the  theoretical va!ues. I.- su sces  t c  observe that in the t h e c r c t i d  
transition matrix, for  the set c f  e<perimental  paraTeter  values er.1pjoye.i i? 
both the Mixed and Sure Groups, :he  last t v c  entr ,cs  in row 1 and  the  first 
and third  entries in rc.;v 2 are identicFtiiy z::~. \.Thereas in :he cbszrved 
matrices,  entries in' these cells cie,;otsd b:\. *. IT; Table 2)  are ;n sc,:ne cases 
markedly  different  from zero. 

Without  regard  to a specific r.,x!e! w e  can n:k another  highly  relevant 
question about  the  data: Can the dt ra  be m.ore a-iequately  accwnteà  for by 
a  tn.o-stage Markov mode! ;v;?ich em.~l:vs i n f o r x a k n  Ebcut reyponxs on the 
previous two trials,  as corn:mred I;;:!: 3 wc-s tage  cdel el which errl>'?ys re- 
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sponse information  about only one preceding trial?  For  this purpose we use 
the  test described in [l]. The null hypothesis is that $ i j k  = $jk for i = 1,2,3,4, 
where P t j k  is  the probability of State k given i and j in succession ron the 
two previous trials,  and p j h  is the probability of State k simply given State 
j on the preceding trial. To test  this hypothesis the following sum  was 
computed from  the  aggregate  group data: 

where N :  FNijr, and  and Ni,, are defined simil’arly to i t j  and  NI^. 
If the null hypothesis is .true, f has  the  usual  limiting  distribution  with 
4(4 - = 36 degrees of freedom. 

The values of were 51.9 for  the  Sure Group and 49.7 for  the Mixed 
Group. In neither  case  were  these  values significant at  the .O5 level. This 
result indicates that  for  the present  set of data  there is no statistically 
significant improvement in prediction if one knows the response history of the 
pair of subjects on the previous two trials  as against only one preceding trial. 
The Markov model presented in this paper is formulated as a  one-stage proc- 
ess, and this finding supports  the model. However,  it should be pointed out 
that this assumption is not necessary for our general  theoretical approach. 

Game Theory Comparisons. The developmept of an adeqqte  theory of 
optimal strategies  for non-zero-sum, two-person games  has  been intensively 
pursued in the  past  decade, but as yet no concept of optimality  has been 
proposed which is as solidly based as  the minimax concept for zero-sum,  two- 
person games. A natural division of non-zero-sum  games is into cooperative 
and %oncioperatiuc! games. In a cooperative game  the  players  are  permitted 
to communicate and bargain  before  selecting  a strategy; in a noncooperative 
game no such communication and bargaining is permitted. The experimental 
situation described in this paper corresponds  to  a noncooperative game. 

In certain special non-zero-sum games  the highly appealing sure-thing prin- 
ciple may be used to select  an optimal strategy.  In  brief,  a  strategy satisfies 
the  sure-thing principle if no matter what your opponent does, you are  at 
least as well off with  this  strategy as with any  other available to you, and 
possibly better off. The experimental  parameters (n i ,  bi, c t ,  di) were so select- 
ed that  for one of the  experimental  groups,  the  Sure Group, each subject 
had available such a strategy, namely Ai for Player A and B, for Player B 
with probability 1. 

Unfortunately, in most, non-zero-sum games  the  sure-thing principle does 
not  lead to  a unique optimal strategy, or even to a  relatively small class of 
optimal strategies. In this  event, probably the best concept of optimality yet 
proposed for noncooperative, non-zero-sum games is Nash’s notion of an egui- 
l i b ~ i ~ n  point ([lo], [ll]). Roughly speaking,  an equilibrium poiat is a set of 
strategies, one for each player,  such that if all players but one follow their 
assigned strategies,  the  remaining player cannot find a  better  strategy  than 
the one assigned to him. The experimental  parameters ( r i i ,  br, c[, di)  were 
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selected for  the second experimental  group,  the Mixed Group, so that  the 
-game had a  unique  equilibrium point consisting of a mixed strategy  for each 
subject. In particular,  Player A should have chosen Response AI and  Player 
B Response BI with probability 1/5. 

Although  subjects  were  not shown the payoff matrix in our experiment,  it 
is 2 reasonable  conjecture that  after a  large  number of trials  they would 
learn  enough  about  the  situation  to approach an optimal game  strategy, i. e., 
a sure-thing  strategy for one group  and an equilibrium point for  the  other. 
Concerning this conjecture the  results  for  the  Sure Group seem conclusive: 
the  optimal strategies of responding AI or B, with probability 1,  for players 
A and B, respectively, are not even  roughly  approximated by the observed 
asymptotic  means.  Findings for  the Mixed Group are also  decisive. The 
results of t tests indicate that  the observed  asymptotic probability of an AI 
response  differs significantly from  the  equilibrium point strategy of 1/5 beyond 
the .O01 level. And the observed  asymptotic probability of a BI response 
differs significantly from  the  equilibrium point strategy  at  the .O2 level. 

Alternntive  Linear Model. Although the  results of this paper have  been 
analyzed in terms of a Markov stimulus-sampling model, it  is also possible 
to  use  the  two-person  linear model formulated in Chapter 8, Sec. 9. In par- 
ticular,  the  parameters (ni, h ,  ci, d ~ )  used in our  experiment  satisfy  the 
restrictions of Theorem 9.7 of Chapter 8. The asymptotes  given by  equations 
9.14 and 9.15 of Chapter 8 are  the same as those  predicted by the Markov 
model, which are shown in Table 1. More generally, Equations. 4  and  5 of 
this paper yield the  same  asymptotes as Equations 9.14 and 9.15 of Chapter 
8, respectively;  the  restriction imposed by Equations 6 on Equations 4 and 5 is 
the  same restriction as the condition c = g = O of the hypothesis of Theorem 
9.7  of Chapter 8. 

On the  other  hand, it IS to be emphasized that  the prediction of identical 
asymptotes by the Markov and  linear models does not entail  the  identity of 
the two models for  the  experimental  situation  studied here.  The variance of 
the  asymptotic probabilities for individual subjects, as well as  any sequentia1 
statistic  such as the probability of two successive identical responses, is dif- 
ferent in the  two models. Detailed comparisons are not presented here, 
because of the difficulty of computing  any  quantity  but the mean  response 
probabilities in the two-person  linear model. 

Comments 

From  the  standpoint of many social psychologists the  experimental  situation 
used in this  study is too highly  structured in terms of su'ccessful performance, 
and interaction  between  subjects is too severely  restricted. Concepts like 
those of friendliness,  cohesiveness,  group  pressure, opinion discrepancy,  and 
receptivity, which have been important in numerous  recent  investigations, 
play  no role in our  situation.  However,  these  limitations  are offset by some 
substantial  assets. An intrinsically  quantitative prediction of behavior in an 
interaction  situation  has been derived in a rigorous manner  from  fundamen- 
tal principles of reinforcement and association learning. In particular,  the 
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only psychological concepts needed for  the analysis of our  experiment  are . 
the classical triad of stimulus, response, and  reinforcement.  In comparison, 
studies using common-sense group concepts like those just  mentioned  have 
not been quantitative in character, nor have  they made any serious  headway 
toward deriving  these concepts from  any specific psychological theory. 

From  another viewpoint it is interesting  to  observe  that  this  study  sup- 
ports results in [31, namely, that various concepts of optimal strategy  from 
the  theory of games have not proved useful tools for  the prediction of actual 
behavior. Although this  generalization  must be qualified by the  remark  that 
subjects  were not shown the payof€ matrix of the  game,  the  relative success 
of statistical  learning models in predicting behavior seems  substantial.  Still, 
it is of theoretical  interest to find out how much, if at  all, explicit knowledge 
of the payoff matrix on the  part of the  subjects  disturbs  the predictive accuracy 
of the  learning model; experimental  investigation of this problem is now 
under way. 
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